7 research outputs found

    Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Get PDF
    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot

    Expert System Based on Autoencoders for Detection of Broken Rotor Bars in Induction Motors Employing Start-Up and Steady-State Regimes

    No full text
    Induction motors are indispensable, robust, and reliable machines for industry; however, as with any machine, they are susceptible to diverse faults. Among the faults that a motor can suffer, broken rotor bars (BRBs) have become one of the most studied ones because the motor under this fault condition can continue operating with apparent normality, yet the fault severity can quickly increase and, consequently, generate the whole collapse of the motor, raising repair costs and the risk to people or other machines around it. This work proposes an expert system to detect BRB early, i.e., half-BRB, 1-BRB, and 2-BRB, from the current signal analysis by considering the following two operating regimes: start-up transient and steady-state. The method can diagnose the BRB condition by using either one regime or both regimes, where the objective is to somehow increase the reliability of the result. Regarding the proposed expert system, it consists of the application of two autoencoders, i.e., one per regime, to diagnose the BRB condition. To automatically separate the regimes of analysis and obtain the envelope of the current signal, the Hilbert transform is applied. Then, the particle swarm optimization method is implemented to compute the separation point of both regimes in the current signal. Once the signal is separated, the two autoencoders and a simple set of if-else rules are employed to automatically determine the BRB condition. The proposed expert system proved to be an effective tool, with 100% accuracy in diagnosing all BRB conditions

    Fourier-Based Adaptive Signal Decomposition Method Applied to Fault Detection in Induction Motors

    No full text
    Time-frequency analysis is commonly used for fault detection in induction motors. A variety of signal decomposition techniques have been proposed in the literature, such as Wavelet transform, Empirical Mode Decomposition (EMD), Multiple Signal Classification (MUSIC), among others. They have been successfully used in many works related with the topic. Nevertheless, the studied signals present amplitude changes and chirp-type frequency components that are difficult to track and isolate with the aforementioned techniques. The contribution of this work is the introduction of a novel technique for time-frequency signal decomposition that is based on an adaptive band-pass filter and the Short Time Fourier Transform (STFT), namely Fourier-Based Adaptive Signal Decomposition (FBASD) method. This method is capable of tracking and extracting nonstationary time-frequency components within a user-selected frequency band. With these components, a methodology for detecting and classifying broken rotor bars in induction motors using the startup transient current is also proposed

    Fourier-Based Adaptive Signal Decomposition Method Applied to Fault Detection in Induction Motors

    No full text
    Time-frequency analysis is commonly used for fault detection in induction motors. A variety of signal decomposition techniques have been proposed in the literature, such as Wavelet transform, Empirical Mode Decomposition (EMD), Multiple Signal Classification (MUSIC), among others. They have been successfully used in many works related with the topic. Nevertheless, the studied signals present amplitude changes and chirp-type frequency components that are difficult to track and isolate with the aforementioned techniques. The contribution of this work is the introduction of a novel technique for time-frequency signal decomposition that is based on an adaptive band-pass filter and the Short Time Fourier Transform (STFT), namely Fourier-Based Adaptive Signal Decomposition (FBASD) method. This method is capable of tracking and extracting nonstationary time-frequency components within a user-selected frequency band. With these components, a methodology for detecting and classifying broken rotor bars in induction motors using the startup transient current is also proposed
    corecore